- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Akiyama, Sachiko (1)
-
Bale, Stuart D (1)
-
Berger, Lars (1)
-
David, Liam (1)
-
Fraschetti, Federico (1)
-
Giacalone, Joe (1)
-
Gopalswamy, Nat (1)
-
Krucker, Säm (1)
-
Kühl, Patrick (1)
-
Lario, David (1)
-
Mäkelä, Pertti (1)
-
Wimmer-Schweingruber, Robert F (1)
-
Wimmer-Schweingruber, Robert F. (1)
-
Xie, Hong (1)
-
Yashiro, Seiji (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& *Soto, E. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report on the 2024 September 9 sustained gamma-ray emission (SGRE) event observed by the Large Area Telescope (LAT) on board the Fermi satellite. The hevent was associated with a backside solar eruption observed by multiple spacecraft such as the Solar and Heliospheric Observatory (SOHO), Solar Terrestrial Relations Observatory (STEREO), Parker Solar Probe (PSP), Solar Orbiter (SolO), Solar Dynamics Observatory (SDO), Wind, and GOES, and by ground-based radio telescopes. Fermi/LAT observed the SGRE after the EUV wave from the backside eruption crossed the limb to the frontside of the Sun. SolO’s Spectrometer Telescope for Imaging X-rays (STIX) imaged an intense (X3.3) flare, which occurred ≈ 41° behind the east limb, from heliographic coordinates S13E131. Forward modeling of the coronal mass ejection (CME) flux rope revealed that it impulsively accelerated (3.54 km s−2) to attain a peak speed of 2162 km s−1. SolO’s energetic particle detectors (EPD) observed protons up to ≈ 1 GeV from the extended shock and electrons that produced a complex type II burst and possibly type III bursts. The durations of SGRE and type II burst are consistent with the linear relation between these quantities obtained from longer duration (> 3 hours) SGRE events. All these observations are consistent with an extended shock surrounding the CME flux rope, which is the likely source of high-energy protons required for the SGRE event. We compare this event with six other behind-the-limb (BTL) SGRE eruptions and find that they are all consistent with energetic shock-driving CMEs. We also find a significant east-west asymmetry (3:1) in the BTL source locations.more » « less
-
David, Liam; Fraschetti, Federico; Giacalone, Joe; Wimmer-Schweingruber, Robert F.; Berger, Lars; Lario, David (, The Astrophysical Journal)Abstract The acceleration of charged particles by interplanetary shocks (IPs) can drain a nonnegligible fraction of the plasma pressure. In this study, we have selected 17 IPs observed in situ at 1 au by the Advanced Composition Explorer and the Wind spacecraft, and 1 shock at 0.8 au observed by Parker Solar Probe. We have calculated the time-dependent partial pressure of suprathermal and energetic particles (smaller and greater than 50 keV for protons and 30 keV for electrons, respectively) in both the upstream and downstream regions. The particle fluxes were averaged for 1 hr before and 1 hr after the shock time to remove short timescale effects. Using the MHD Rankine–Hugoniot jump conditions, we find that the fraction of the total upstream energy flux transferred to suprathermal and energetic downstream particles is typically ≲16%, in agreement with previous observations and simulations. Notably, by accounting for errors on all measured shock parameters, we have found that for any given fast magnetosonic Mach number, M f < 7, the angle between the shock normal and average upstream magnetic field, θ Bn , is not correlated with the energetic particle pressure; in particular, the partial pressure of energized particles does not decrease for θ Bn ≳ 45°. The downstream electron-to-proton energy ratio in the range ≳ 140 eV for electrons and ≳ 70 keV for protons exceeds the expected ∼1% and nears equipartition (>0.1) for the Wind events.more » « less
An official website of the United States government
